
Swift: Fast, Reliable, Loosely Coupled Parallel Computation

Yong Zhao,1 Mihael Hategan,2 Ben Clifford,2 Ian Foster,1,2,3
Gregor von Laszewski,2,3 Ioan Raicu,1 Tiberiu Stef-Praun,2 Mike Wilde2,3

1 Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
2 Computation Institute, University of Chicago & Argonne National Laboratory

3 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
{yongzh,iraicu}@cs.uchicago.edu, benc@hawaga.org.uk, {foster,gregor,hategan,tiberius,wilde}@mcs.anl.gov

Abstract

We present Swift, a system that combines a novel
scripting language called SwiftScript with a powerful
runtime system based on CoG Karajan, Falkon, and
Globus to allow for the concise specification, and
reliable and efficient execution, of large loosely
coupled computations. Swift adopts and adapts ideas
first explored in the GriPhyN virtual data system,
improving on that system in many regards. We
describe the SwiftScript language and its use of XDTM
to describe the logical structure of complex file system
structures. We also present the Swift runtime system
and its use of CoG Karajan, Falkon, and Globus
services to dispatch and manage the execution of many
tasks in parallel and Grid environments. We describe
application experiences and performance experiments
that quantify the cost of Swift operations.

1. Introduction

A common pattern in scientific computing
involves the execution of many tasks that are coupled
only in the sense that the output of one may be passed
as input to one or more others—for example, as a file,
or via a Web Services invocation. While such “loosely
coupled” computations can involve large amounts of
computation and communication, the concerns of the
programmer tend to be different than in traditional high
performance computing, being focused on
management issues relating to the large numbers of
datasets and tasks (and often, the complexities inherent
in “messy” data organizations) rather than the
optimization of interprocessor communication.

Consider this painful but familiar scenario: A
neuroscientist needs to analyze ten thousand functional
magnetic resonance imaging (fMRI) files. The analysis
program is a complex Perl script. Files are stored in a
collection of UNIX directories, with metadata coded in
directory and file names. Local computing facilities

are inadequate. Thus, the scientist must manually
extract files, copy them to a remote cluster, start a
home-grown script to dispatch tasks, and check exit
codes and output files to see which tasks succeeded
and failed. And when the computation is completed, the
problem remains of documenting what was done.

Such difficulties motivated our design of Swift, a
parallel programming system that integrates the
following elements to address these difficulties:
• A scripting language, SwiftScript, allows users to

express operations on datasets in terms of their
logical organization; the XML Dataset Typing and
Mapping (XDTM) [10] notation is used to define
a mapping between that logical organization and
the underlying physical structure.

• An execution engine, CoG Karajan [9], a
lightweight provisioning and submission system,
Falkon [13], and a compiler and associated
libraries, execute tasks specified via SwiftScript
programs on local or remote computers.

• A provenance-recording component, Kickstart
[18], captures execution details for diagnosis and
eventual recording in a provenance database.
These elements allow a few lines of SwiftScript to

specify computations involving large numbers (tens or
hundreds of thousands) of files and tasks, and for those
computations to be executed efficiently and reliably on
many distributed computers. The impact on end users
such as our unfortunate neuroscientist can be enormous.
Code sizes can be reduced by an order of magnitude or
more [19]. In one example, a 160-member climate
model ensemble took 2.5 months when performed
manually; a 250-member ensemble was finished within
4 days—admittedly on a faster computer—when
automated with a precursor to Swift [11]. Other users
are found in the physical, biological, and social
sciences, and in the humanities and science education.

Swift grew out of the Virtual Data System (VDS)
[7], which integrated a simple virtual data language,
planners (including Pegasus [6]) for program

optimization and scheduling, DAGMan for task
management [4], kickstart, and a virtual data catalog
[20]. Swift improves on VDS in its use of XDTM to
define logical views of datasets; SwiftScript and CoG
Karajan support for iteration operations, which allow
for more concise specifications of computations over
larger datasets; and Falkon for efficient task dispatch.

The rest of this paper is organized as follows. We
introduce SwiftScript and the Swift system design in
Sections 2 and 3. We present system evaluation results
and applications in Sections 4 and 5. We discuss
related work in Section 6, and summarize in Section 7.

2. Notation: SwiftScript and XDTM

The need to process numerous tasks reliably and
efficiently arises, for example, when performing large-
scale data analysis or executing many computations to
study sensitivity to parameter values (in parameter
studies) and/or initial conditions (in ensemble
simulations). Users often struggle with bookkeeping
tasks due to numerous tasks, datasets, and resources.

Users can benefit from a concise and readable
notation that simplifies the description, maintenance,
and debugging of problem specifications. Such a
notation can also facilitate high-performance execution
by revealing opportunities for concurrent execution.
Conventional scripting languages such as UNIX Shell

or Perl, frequently used to implement the applications
that we target, are not concise, readable, easily
parallelizable or analyzable, and are not amenable to
the automation of provenance tracking. We overcome
these problems with XDTM and SwiftScript.

2.1. XDTM

Even logically simple applications can become
complicated when they “messy” data is stored in odd
formats and storage organizations. For example,
compare the logical and physical layouts in Figure 1.
The logical organization is a clean hierarchy of studies,
groups, subjects (patients), runs (series of volumes),
and volumes (brain scans), while the physical layout is
a complex mix of directory structures and files [8]. (It
is not obvious that ‘/knottastic’ is a Study, containing
Group ‘AA’, in turn containing Subject ‘04nov06aa,’
etc.) The result, without Swift, is often complex and
hard-to-maintain application orchestration code.

We address this problem by using XDTM, which
allows logical datasets to be defined in a manner that is
independent of the datasets’ concrete physical
representations. XDTM employs a two-level
description of datasets, defining separately via a type
system based on XML Schema the abstract structure of
datasets, and the mapping of that abstract data structure
to physical representations.

Figure 1: fMRI logical data structure (left) vs. physical file system layout (right)

./knottastic
total 58
drwxr-xr-x 4 yongzh users 2048 Nov 12 14:15 AA
drwxr-xr-x 4 yongzh users 2048 Nov 11 21:13 CH
drwxr-xr-x 4 yongzh users 2048 Nov 11 16:32 EC

./knottastic/AA:
total 4
drwxr-xr-x 5 yongzh users 2048 Nov 5 12:41 04nov06aa
drwxr-xr-x 4 yongzh users 2048 Dec 6 12:24 11nov06aa

. /knottastic//AA/04nov06aa:
total 54
drwxr-xr-x 2 yongzh users 2048 Nov 5 12:52 ANATOMY
drwxr-xr-x 2 yongzh users 49152 Dec 5 11:40 FUNCTIONAL

. /knottastic/AA/04nov06aa/ANATOMY:
total 58500
-rw-r--r-- 1 yongzh users 348 Nov 5 12:29 coplanar.hdr
-rw-r--r-- 1 yongzh users 16777216 Nov 5 12:29 coplanar.img

. /knottastic/AA/04nov06aa/FUNCTIONAL:
total 196739
-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0001.hdr
-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0001.img
-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0002.hdr
-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0002.img
-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0003.hdr
-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0003.img

type Study { type Run {
Group g[]; Volume v[];

} }

 type Volume {
type Group { Image img;
 Subject s[]; Header hdr;
} }

 type AirVector {
type Subject { Air a[];
 Volume anat; }
 Run run[];
}

(Run resliced) reslice_wf (Run r) {
 Run yR = reorientRun(r , "y", "n");
 Run roR = reorientRun(yR , "x", "n");
 Volume std = roR.v[1];
 AirVector roAirVec =
 alignlinearRun(std, roR, 12, 1000, 1000, "81 3 3");
 resliced = resliceRun(roR, roAirVec, "-o", "-k");
}

reorientRun

reorientRun

alignlinearRun

resliceRun

Figure 2 A Swift program (fragment) and the resulting task graph

A dataset’s logical structure is specified via a
subset of XML Schema, which defines primitive scalar
data types such as Boolean, Integer, String, Float, and
Date, and also allows for the definition of complex
types via the composition of simple and complex types.
The use of XML Schema as a type system has the
benefit of supporting powerful standardized query
languages such as XPath in our selection methods.

A dataset’s physical representation is then defined
by a mapping descriptor, which describes how each
element in the dataset’s logical schema is stored
in/fetched from physical structures such as directories,
files, and database tables. To permit reuse for different
datasets, mapping descriptors may refer to external
parameters for such things as dataset location(s).

We use a virtual integration approach to
implement the mapping mechanism. Each data source
is regarded as a virtual XML source, with its structure
described in an XML Schema. A mapper is responsible
for accessing the data source and converting its data
to/from an XML document or stream that conforms to
the XML schema. The case is somewhat different from
a traditional data integration approach, since we need
to deal with writing/updating to data sources as well as
querying them.

We define a standard mapping interface so that
different data providers can implement the interface to
support access to various data representations. We
provide default mapping implementations for string
mapping, file system mapping, and CSV (comma
separated-value) files.

2.2. SwiftScript

The SwiftScript scripting language builds on
XDTM to allow for the definition of typed data
structures and procedures that operate on such data
structures. SwiftScript procedures define logical data
types and operations on those logical types; the
SwiftScript implementation uses mappers to access the
corresponding physical data. In addition to providing
the usual advantages of strong typing (type checking,
self-documenting code, etc.), this approach allows
SwiftScript programs to express opportunities for
parallel execution easily, for example by applying
transformations to each component of a hierarchically
defined logical structure.

As an example, the logical structure of the fMRI
dataset shown in Figure 1 can be represented by the
SwiftScript type declarations in the upper left of Figure
2. Here, Study is declared as containing an array of
Group, which in turn contains an array of Subject, etc.
Similarly, an fMRI Run is a series of brain scans called
volumes, with a Volume containing a 3D image of a
volumetric slice of a brain image, represented by an
Image (voxels) and a Header (scanner metadata).

Figure 3 includes two example procedures. We
examine reorientRun first. This is what we call a
compound procedure, meaning it calls one or more
other SwiftScript procedures. Note the typed input
arguments (to the right of the procedure name) and
output argument (to the left). The procedure takes in a
run ir and applies the procedure reorient (which rotates
a brain image along a certain axis) to each volume in

the run to produces a reoriented run or. Because the
multiple calls to reorient operate on independent data
elements, they can proceed in parallel.

The procedure reorient in Figure 3 is atomic,
corresponding to an invocation of an executable
program or a Web Service. This procedure has typed
input parameters iv, direction and overwrite and one
output ov. The body of this particular procedure
specifies that it invokes a program (conveniently, also
called reorient) that will be dynamically mapped to a
binary executable. (This executable will execute at an
execution site chosen by the Swift runtime system.)
The body also specifies how input parameters map to
command line arguments. The notation @filename is a
built-in mapping function that maps a logical data
structure to a physical file name.

Figure 3 fMRI procedure declarations

A compound procedure can also comprise a series
of procedure calls, using variables or datasets to
establish data dependencies. Such procedures can
themselves be called by other procedures, thus defining
a potentially large and complex execution graph.

The procedure reslice_wf (Figure 2, lower left)
applies reorientRun to a run first in the x axis and then
in the y axis, and then aligns each image in the
resulting run with the first image. The program
alignlinear determines how to spatially adjust an
image to match a reference image, and produces an air
parameter file. The actual alignment is done by the
program reslice. Note that variable yR, being the
output of the first step and the input of the second step,
defines the data dependencies between the two steps.
More complex procedures can be composed in a
similar fashion, using iterations and other constructs.

The reslice_wf example defines a simple four-step
pipeline computation. The pipeline is illustrated in the
center of Figure 2, while on the right we show the
expanded graph for a 20-volume run. Each volume
comprises an image file and a header file, so there are a

total of 40 input files and 40 output files. We can also
apply the same procedure to a run containing hundreds
or thousands of volumes.

SwiftScript allows concise definitions of logical
data structures and logical procedures that operate on
them, and complex computations to be composed from
simple and compound procedures. Its support for
nested iterations can allow a compact SwiftScript
program (for example, a nested set of iterations that
applies the program reorient to each volume in a whole
Study) to express hundreds of thousands of parallel
tasks. We have shown that SwiftScript programs can
be at least an order of magnitude smaller in lines of
code than other approaches such as Shell scripts and
directed acyclic graph specifications [19].

3. Implementation (Volume ov) reorient (Volume iv, string direction,

 string overwrite) {
 app {
 reorient @filename(iv.hdr)

 @filename(ov.hdr)
 direction
 overwrite;

 }
}

(Run or) reorientRun (Run ir, string direction,
 string overwrite) {
 foreach Volume iv, i in ir.v {
 or.v[i] = reorient (iv, direction, overwrite);
 }
}

The Swift runtime system (see Figure 4) is a

scalable environment for efficient specification,
scheduling, monitoring and tracking of SwiftScript
programs. We describe its components one by one.

Program specification: computations defined in
SwiftScript programs are compiled by a SwiftScript
compiler into abstract computation plans, which can be
scheduled for execution by the execution engine.

Scheduling: Swift uses CoG Karajan as its
execution engine. Karajan provides libraries for data
transfer, task submission, and Grid services access.
Such operations can be organized using language
constructs such as sequential and parallel execution,
sequential and parallel iterations, conditional execution
and functional abstraction etc. We extend Karajan with
libraries to support the XDTM type system and logical
dataset manipulation, adapters to access legacy VDS
components (for instance, site catalog), mappers for
accessing heterogeneous physical data storage, and
fault tolerance mechanisms. Karajan uses light-weight
threading techniques to instantiate and dispatch tasks,
and thus can execute large task graphs (see Section 4).

Execution: Abstract execution plans are
interpreted and dispatched by Karajan onto execution
sites. These abstract plans do not specify execution
location: tasks are dispatched to virtual nodes, which
can be bound variously to personal desktops, clusters,
and distributed Grids. Specifics such as site selection,
data stage-ins and stage-outs, and error checking are
determined at runtime. Callouts allow customized
functions to determine where to dispatch tasks, how to
group tasks to increase granularity, and/or when and
how to perform data staging operations. Swift also
supports advanced scheduling and optimization
methods, such as load balance, fault tolerance, and
computation restart.

SwiftScript

Abstract
computation

Virtual Data
Catalog

SwiftScript
Compiler

Specification Execution

Virtual Node(s)

Provenance
data

Provenance
dataProvenance

collector

launcher

launcher

file1

file2

file3

App
F1

App
F2

Scheduling

Execution Engine
(Karajan w/

Swift Runtime)

Swift runtime
callouts

C
C CC

Status reporting

Provisioning

Dynamic
Resource

Provisioner

EC2

Figure 4 Swift system diagram

Provenance tracking: Individual tasks are
invoked by a launcher program (e.g., kickstart) which
monitors execution and gathers provenance
information. We plan to record this information in a
virtual data catalog, as in VDS.

Provisioning: Tasks determined to be executable
by Karajan can be submitted directly, via a GRAM
submission, to a (local or remote) scheduler for
execution; in this way, resource provisioning and task
submission are handled together. The Swift
architecture also allows for those two functions to be
separated. Specifically, a dynamic resource provisioner
(right hand side of figure) can interact with local or
remote computing systems to get computing resources,
and then deploy task execution services onto those
resources. The execution services then interact with a
task queue service to obtain tasks to execute. Falkon
provides implementations of these functions.

4. Evaluation

We report on experiments that evaluate the
performance of various elements of the Swift system.

We consider first the size of the computations that
can be executed correctly. Figure 5 shows the
maximum number of tasks (measured by the number of
nodes in a task graph) that Swift can process and
dispatch with certain amount of available memory. The
system can support about 4000 nodes with 32MB of
memory and 160,000 nodes with 1GB memory.

Swift addresses reliability issues at several levels.
At the software development level, its type checking
capabilities allow it to identify potential problems in a
program prior to execution. Its support for virtual
nodes makes it easy to first test a program on a local

host with a small set of datasets, and then move to
larger problems and execution sites.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 200 400 600 800 1000 1200

Memory (MB)

N
um

be
r o

f N
od

es

Figure 5 Swift system scalability

During execution, the underlying Karajan engine
supports flexible exception handling mechanism.
Transitory problems are recovered by retrying the
faulty tasks (for instance, retry a transfer if a GridFTP
server is busy), and host level faults (where a resource
exhibits problems with unknown duration) are dealt
with by rescheduling a task on a different site.

Swift also keeps a restart log, allowing it to
resume the state of a computation in case of premature
termination (for instance, caused by a machine reboot).
We have tested restartability by repeatedly interrupting
program execution, and verified that our programs
continue from where they were interrupted. We also
note some (good) side effects to this mechanism: (1)
new inputs can be added after a computation has been
run for some time, and once we restart the computation,
the system is able to figure out that these new inputs
are present and not processed, and thus schedule their
executions. (2) We can make modifications to a
program and restart it, as long as the modifications do
not affect data flows that have already happened. This

effect is useful for debugging and testing purposes. The
Swift restart log is similar to a Condor rescue DAG,
except that Condor tags tasks that are finished, whereas
we log datasets that are produced successfully.

Swift uses three mechanisms to improve efficiency:
Pipelining: the immediate dispatch of dependent

tasks, even if in a different “foreach” block. Swift’s
data-driven model means that once an item in a
collection is processed, any processes dependent on
that item can proceed immediately, without waiting for
the whole collection to finish.

Clustering: many scientific computations
comprise many short tasks. (For example, the reorient
program in the fMRI example runs in a few seconds.)
The initialization and scheduling of such tasks can
pose significant overheads. Thus, we (optionally)
bundle groups of (mostly independent) tasks and
submit them as a single task.

Pluggable execution providers: The CoG
Karajan resource provider interface allows Swift to
schedule tasks to computers via different mechanisms.
We used existing local host, cluster scheduler, and
GRAM providers, and implemented a new provider
for the Falkon (Fast and Lightweight Task Execution)
tools [13]. Falkon supports the efficient execution of
many small tasks in batch scheduled environments.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50
Number of workers

Sp
ee

du
p

ideal
sleep 0
sleep 1
sleep 2
sleep 4
sleep 8
sleep 16
sleep 32

Figure 6 Swift speedup with Falkon provider

Figure 6 shows speedups measured for synthetic
tasks with Falkon. Swift executed computations
comprising 960 test (“sleep”) tasks from a submit host
at the University of Chicago (UC_SUB) to a Falkon
service running on the TeraGrid ANL cluster. We
varied the sleep durations and also configured Falkon
to use different number of nodes for task execution.
The ideal speedup is equal to the number of nodes used.
We see that Falkon can operate efficiently even when
tasks are short. On 48 nodes, Swift+Falkon can achieve
close to 47 times speedup for 32-second tasks.

Figure 7 shows Swift throughput with the Falkon
provider. Falkon ran on the TeraGrid ANL site and we
submitted both from a separate node within that cluster
(ANL ANL) and from UC_SUB (UC ANL). We

measured throughput, defined as the number of sleep(0)
tasks completed per second. Swift was able to achieve
up to 56 tasks/second in the LAN setting and 46
tasks/second in the remote setting. The scheduling of
each sleep task actually involved many extra steps such
as site selection, execution directory set up, exit code
checking, and clean up. However, we improve
throughput relative to GRAM+ PBS (which achieves
around two tasks per second) by a factor of 23.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 7

Number of Workers

Th
ro

ug
hp

ut

0

Swift + Falkon (ANL->ANL)
Swift + Falkon (UC->ANL)

Figure 7 Swift throughput with Falkon provider

We also measured turnaround time for the fMRI
workflow of Figure 1, with various input sizes (number
of volumes) and different scheduling strategies. We
submitted from UC_SUB to the TeraGrid ANL cluster.
Results are in Figure 8; error bars indicate the standard
deviation of measurements.

1239

2510

3683

4808

456
866 992 1123

120 327 546 678

0

1000

2000

3000

4000

5000

6000

120 240 360 480
Input Data Size (Volumes)

Ti
m

e
(s

)

GRAM
GRAM/Clustering
Falkon

Figure 8 Execution time for the fMRI workflow

Since for each volume, each individual task
required just a few seconds, it is inefficient to schedule
each task over GRAM+PBS, since the overhead of
PBS resource allocation is large relative to the short
execution time. GRAM+PBS submission had low
throughput although it could have potentially used all
the available nodes on the site. With clustering,
execution time was reduced by up to four times (tasks
were bundled into roughly 8 groups), as the overhead
was amortized by the bundled tasks. Falkon (with 8
worker nodes) further reduced execution time by 40-
70%, as each task was dispatched efficiently.

5. Swift Applications

Swift has been applied to applications in the
physical, biological, and social sciences, the
humanities, and science education. We summarize
some applications and their scales in Table 1. For each,
we give the number of tasks in a typical analysis run
and the number of levels (or stages) in such analyses.

6. Related Work

The MapReduce [5] tool for parallel computations
is limited to processing key-value based data, and the
runtime environment requires Google File System.
Swift targets scientific applications that process
heterogeneous data formats, and can schedule
computations in a location-independent way.

Table 1: Example Swift applications
Application #Tasks/

Run
#Levels

fMRI AIRSN Processing 100s 12

fMRI Aphasia Study 500 4

NVO/NASA Photorealistic
Montage

1000s 16

QuarkNet/I2U2
Physics Science Education

10s 3-6

Radiology Classifier Training 1000s 5
SIDGrid EEG Wavelet
Processing, Gaze Analysis

100s 20

Pegasus [6] and DAGMan [4] can also schedule
large scale computations in Grid environments.
DAGMan provides a workflow engine that manages
Condor tasks organized as directed acyclic graphs
(DAGs) in which each edge corresponds to an explicit
task precedence. It has no knowledge of data flow, and
in distributed environments works best with a higher-
level, data-cognizant layer. DAGMan also lacks
dynamic features such as iteration or conditional
execution. Pegasus is primarily a set of DAG
transformers that can translate a workflow graph into a
location-specific DAGMan input file; prune tasks for
files that exist; select sites for tasks; and cluster tasks
based on various criteria. The planners must operate on
an entire workflow statically, and execution sites may
not be changed after a workflow is processed, which
can be long before a task runs, a strategy that may not
work well in dynamic environments.

BPEL [3] is used primarily for service
composition and orchestration. Early versions lacked
support for iteration which would result in large
programs; this problem is addressed in the new version

2.0. In addition, its complex XML is cumbersome to
write compared with our compact scripting language.

Taverna [12], Triana [17], and Kepler [1] have
also been applied to scientific problems. However, they
do not abstract dataset types or provide location
transparency. Data movement and Grid task
submission all need to be specified explicitly. Their
support for multi-site Grid execution is limited.

As discussed earlier, Swift uses CoG Karajan [9]
libraries and primitives for task scheduling, data
transfer, and Grid task submission. Swift adds support
for high-level abstract specification of large parallel
computations, data abstraction, and workflow restart,
and also (via Falkon and Globus) fast, reliable
execution over multiple sites.

7. Summary and Future Work

Swift addresses important end-to-end issues in
large-scale loosely coupled parallel computation. It
imposes elegant order on a messy complex world of
distributed and failure-prone applications. It provides a
clean separation of logical data structures and physical
storage formats, a scripting language for concise
specification and composition of complex workflows,
and a scalable runtime system that can manage and
dispatch hundreds of thousands of tasks onto a variety
of parallel and distributed computation facilities.

Swift provides a wide range of capabilities to
support the formulation, execution and management of
large compute- and data- intensive computations:

Scalability: Swift has demonstrated large-scale
execution of large computations on both parallel
computers and distributed systems.

Scripting: Scientists often seem to prefer scripting
languages. SwiftScript meets this need with a simple,
familiar, and expressive notation.

Dataset typing and iteration: Swift allows the
declaration of logical data structures and typed
procedures that iterate over such datasets. Nested
iterations can easily scale to thousands or even millions
of data objects and associated tasks.

Dataset mapping is critical for automating task
execution with location independence. Systems need to
know how to access dataset components and how to
pack datasets and transport them to an execution site.
Swift’s dataset layout description model allows users
to work at a clean abstract level.

Application service interoperability: Swift can
integrate both service-oriented and command-oriented
applications. While services are gaining adoption, most
scientists still use non service-oriented applications.
Swift provides a bridge between these two models.

Provenance and annotation: Swift integrates
provenance and annotation with computation through a
language that makes data flow explicit and trackable,
and a catalog (soon to be integrated) that records data
derivation activities.

This unique combination of features enables the
automation of scientific data and workflow
managements, and improves usability and productivity
in scientific applications and data analyses.

We continue to work to improve Swift’s usability,
functionality, and scalability. In particular, we are
working on streamlining SwiftScript’s application
interface, and on integrating VDS data provenance
structures to represent programs, metadata, and
runtime provenance [19], to support a wide range of
provenance queries [20]. We are also benchmarking
system components with large scale application runs.

Acknowledgments

We used computers at the U.Chicago Computation
Institute, and at the Teragrid U.Chicago site. This work
was supported by the National Science Foundation
GriPhyN Project (ITR-800864) and iVDGL (PHY-
122557); I2U2: Interactions in Understanding the
Universe (PHY-0636265); the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy (DE-
AC02-06CH11357); and the National Institutes of
Health (NS37470, NS44393, DC008638-01). We thank
Veronika Nefedova, Rob Jacob, Steven Small, Uri
Hasson, Dan Katz, Maryellen Giger, Andrew Jamieson,
and the SIDGrid project (Bennett Bertenthal and Sarah
Kenney: NSF BCS 05-37849) for their collaboration
on the applications described here.

References
[1] Altintas, I., Berkley, C., Jaeger, E., Jones, M.,

Ludäscher, B. and Mock, S., Kepler: An Extensible
System for Design and Execution of Scientific
Workflows. in 16th Intl. Conference on Scientific and
Statistical Database Management, (2004).

[2] Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent, S.
and Foster, I., Applying Chimera Virtual Data Concepts
to Cluster Finding in the Sloan Sky Survey. in SC2002,
(Baltimore, MD, 2002).

[3] Business Process Execution Language for Web Services,
Version 1.0, http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/, 2002.

[4] Condor DAGMan (Directed Acyclic Graph Manager),
http://www.cs.wisc.edu/condor/dagman, 2007.

[5] Dean, J. and Ghemawat, S., MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[6] Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B.,
Good, J., Laity, A., Jacob, J.C. and Katz, D.S. Pegasus:
A Framework for Mapping Complex Scientific
Workflows onto Distributed Systems. Scientific
Programming, 13 (3). 219-237.

[7] Foster, I., Voeckler, J., Wilde, M. and Zhao, Y.,
Chimera: A Virtual Data System for Representing,
Querying, and Automating Data Derivation. in 14th Intl.
Conf. on Scientific and Statistical Database
Management, (Edinburgh, Scotland, 2002).

[8] Horn, J.V., Dobson, J., Woodward, J., Wilde, M., Zhao,
Y., Voeckler, J. and Foster, I. Grid-Based Computing
and the Future of Neuroscience Computation. in
Methods in Mind, MIT Press, 2006.

[9] Laszewski, G.v., Hategan, M. and Kodeboyina, D. Java
CoG Kit Workflow. in Taylor, I.J., Deelman, E.,
Gannon, D.B. and Shields, M. eds. Workflows for
eScience, 2007, 340-356.

[10] Moreau, L., Zhao, Y., Foster, I., Voeckler, J. and Wilde,
M., XDTM: XML Data Type and Mapping for
Specifying Datasets. in European Grid Conference,
(2005).

[11] Nefedova, V., Jacob, R., Foster, I., Liu, Y., Liu, Z.,
Deelman, E., Mehta, G. and Vahi, K., Automating
Climate Science: Large Ensemble Simulations on the
TeraGrid with the GriPhyN Virtual Data System. in 2nd
IEEE International Conference on eScience and Grid
Computing, (2006).

[12] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M.,
Greenwood, M., Carver, T., Glover, K., Pocock, M.R.,
Wipat, A. and Li, P. Taverna: A Tool for the
Composition and Enactment of Bioinformatics
Workflows Bioinformatics Journal, 20 (17). 3045-3054.

[13] Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., Wilde,
M., Falkon: a Fast and Light-weight tasK executiON
framework, Argonne National Laboratory, Mathematics
and Computer Science Division Preprint ANL/MCS-
P1424-0507, May 2007..

[14] Sulakhe, D., Rodriguez, A., Wilde, M., Foster, I. and
Maltsev, N., Using Multiple Grid Resources for
Bioinformatics Applications in GADU. in IEEE/ACM
International Symposium on Cluster Computing and
Grid, (2006).

[15] Swift, http://www.ci.uchicago.edu/swift, 2007
[16] TeraGrid, http://www.teragrid.org, 2007.
[17] Taylor, I., Shields, M., Wang, I. and Harrison, A. Visual

Grid Workflow in Triana. Journal of Grid Computing,,
3 (3-4). 153-169.

[18] Vöckler, J.-S., Mehta, G., Zhao, Y., Deelman, E. and
Wilde, M., Kickstarting Remote Applications. in 2nd
International Workshop on Grid Computing
Environments (2006).

[19] Zhao, Y., Dobson, J., Foster, I., Moreau, L. and Wilde,
M. A Notation and System for Expressing and
Executing Cleanly Typed Workflows on Messy
Scientific Data. SIGMOD Record 34 (3). 37-43.

[20] Zhao, Y., Wilde, M., Foster, I., Applying the Virtual
Data Provenance Model, Proceedings of the
International Provenance and Annotation Workshop

http://www.ci.uchicago.edu/swift
http://www.teragrid.org/

2006 (IPAW2006), Lecture Notes in Computer Science, Springer, 2006.

	1. Introduction
	2. Notation: SwiftScript and XDTM
	2.1. XDTM
	2.2. SwiftScript

	3. Implementation
	4. Evaluation
	5. Swift Applications
	6. Related Work
	7. Summary and Future Work
	Acknowledgments
	References

